

Welcome to django-audiofield’s documentation!

	Release:	0.8.2

	Date:	Sep 27, 2017

Contents:

	Introduction
	Overview

	Usage

	Documentation

	Contributing

	License

	Credit

	Installation overview
	Install requirements

	Install dependencies

	Install requirements

	Configuration

	Developer Documentation
	Prerequisites

	Objects Description

	AudioFile Forms

	Test Case Descriptions

Indices and tables

	Index

	Module Index

	Search Page

Introduction

	Version:	0.8.2

	Release:	0.8.2

	Date:	Sep 27, 2017

	Keywords:	django, python, audiofield, audio, wav, mp3, sox

–

Django-audiofield is an application written in Python, using the Django Framework.

The license is MIT.

Overview

Django-audiofield is a Django application which allows audio file upload and conversion to mp3, wav and ogg format.
It also makes it easy to play the audio files into your django application, for this we integrated a HTML5 and Flash audio player ‘SoundManager2’

The goal of this project is to quickly manage audio files into your django project and make it easy for admins and users to listen to them.

[image: _images/django-admin-audiofield.png]
[image: _images/django-admin-audiofield-upload.png]
More information about Soundmanager2 : http://www.schillmania.com/projects/soundmanager2/

Usage

Add the following lines in your models.py file:

from django.conf import settings
from audiofield.fields import AudioField
import os.path

Add the audio field to your model
audio_file = AudioField(upload_to='your/upload/dir', blank=True,
 ext_whitelist=(".mp3", ".wav", ".ogg"),
 help_text=("Allowed type - .mp3, .wav, .ogg"))

Add this method to your model
def audio_file_player(self):
 """audio player tag for admin"""
 if self.audio_file:
 file_url = settings.MEDIA_URL + str(self.audio_file)
 player_string = '<ul class="playlist"><li style="width:250px;">\
 %s' % (file_url, os.path.basename(self.audio_file.name))
 return player_string
audio_file_player.allow_tags = True
audio_file_player.short_description = _('Audio file player')

Add the following lines in your admin.py:

from your_app.models import your_model_name

add 'audio_file_player' tag to your admin view
list_display = (..., 'audio_file_player', ...)
actions = ['custom_delete_selected']

def custom_delete_selected(self, request, queryset):
 #custom delete code
 n = queryset.count()
 for i in queryset:
 if i.audio_file:
 if os.path.exists(i.audio_file.path):
 os.remove(i.audio_file.path)
 i.delete()
 self.message_user(request, _("Successfully deleted %d audio files.") % n)
custom_delete_selected.short_description = "Delete selected items"

def get_actions(self, request):
 actions = super(AudioFileAdmin, self).get_actions(request)
 del actions['delete_selected']
 return actions

If you are not using the installation script, please copy following template file to your template directory:

cp audiofield/templates/common_audiofield.html /path/to/your/templates/directory/

Add the following in your template files (like admin/change_form.html, admin/change_list.html, etc... in which you are using audio field type):

{% block extrahead %}
{{ block.super }}
 {% include "common_audiofield.html" %}
{% endblock %}

Then perform following commands to create the table and collect the static files:

./manage.py syncdb

and then:

./manage.py collectstatic

Create audiofield.log file:

touch /var/log/audio-field.log

Documentation

Extensive documentation is available on ‘Read the Docs’:
http://django-audiofield.readthedocs.org

Contributing

If you’ve found a bug, implemented a feature or customized the template and
think it is useful then please consider contributing. Patches, pull requests or
just suggestions are welcome!

Source code: http://github.com/Star2Billing/django-audiofield

If you don’t like Github and Git you’re welcome to send regular patches.

Bug tracker: https://github.com/Star2Billing/django-audiofield/issues

License

Copyright (c) 2011-2014 Star2Billing S.L. <info@star2billing.com>

django-audiofield is licensed under MIT, see MIT-LICENSE.txt.

Credit

Django-audiofield is a Star2Billing-Sponsored Community Project, for more information visit
http://www.star2billing.com or email us at info@star2billing.com

Installation overview

Install requirements

A requirements file stores a list of dependencies to be installed for your project/application.

To get started with Django-audiofield you must have the following installed:

	python >= 2.4 (programming language)

	Apache / http server with WSGI modules

	Django Framework >= 1.3 (Python based Web framework)

	Django-uuidfield

Install dependencies

Install dependencies on Debian:

apt-get -y install libsox-fmt-mp3 libsox-fmt-all mpg321 ffmpeg

Install dependencies on Redhat/CentOS:

yum -y install python-setuptools libsox-fmt-mp3 libsox-fmt-all mpg321 ffmpeg

Install requirements

Use PIP to install the dependencies listed in the requirments file,:

$ pip install -r requirements.txt

Configuration

Add audiofield into INSTALLED_APPS in settings.py:

INSTALLED_APPS = (
 ...
 'audiofield',
 ...)

Add the following code to your middleware:

MIDDLEWARE_CLASSES = (
 ...
 'audiofield.middleware.threadlocals.ThreadLocals',
)

If you are going to add customer audio form on your frontend, please add following:

Frontend widget values
CHANNEL_TYPE_VALUE = 0 # 0-Keep original, 1-Mono, 2-Stereo

FREQ_TYPE_VALUE = 8000 # 0-Keep original, 8000-8000Hz, 16000-16000Hz, 22050-22050Hz,
 # 44100-44100Hz, 48000-48000Hz, 96000-96000Hz

CONVERT_TYPE_VALUE = 0 # 0-Keep original, 1-Convert to MP3, 2-Convert to WAV, 3-Convert to OGG

Run following commands:

python manage.py syncdb

python manage.py collectstatic

Developer Documentation

Contents:

	Prerequisites

	Objects Description
	AudioFile

	AudioFile Forms
	Forms Definition

	Forms Usage

	Test Case Descriptions
	How to run tests

Prerequisites

	To fully understand this project, developers will need to have an advanced knowledge of:

	
	Django : http://www.djangoproject.com/

	Python : http://www.python.org/

Objects Description

AudioFile

Describe model of the AudioFile

Attributes:

	name - given name to the audio file / not unique .

	audio_file - path and filename to the audio file.

	user - Attach user.

	created_date - record created date.

	updated_date - record updated date.

Name of DB table: audio_file

AudioFile Forms

Forms Definition

This form aims to be used in the django admin, support all the features for convertion per default:

class AdminAudioFileForm(ModelForm):
 class Meta:
 model = AudioFile
 fields = ['name', 'audio_file']

The following form aims to be used on frontend to power simple upload of audio files without convertion:

class CustomerAudioFileForm(ModelForm):
 audio_file = forms.FileField(widget=CustomerAudioFileWidget)
 class Meta:
 model = AudioFile
 fields = ['name', 'audio_file']
 exclude = ('user',)

Forms Usage

We provide you a simple example of using the forms to list and upload audio file on the frontend.

In url.py:

...
(r'^$', 'frontend.views.add_audio'),

In view.py:

...
@login_required
def add_audio(request):
 template = 'frontend/add_audio.html'
 form = CustomerAudioFileForm()

 # Add audio
 if request.method == 'POST':
 form = CustomerAudioFileForm(request.POST, request.FILES)
 if form.is_valid():
 obj = form.save(commit=False)
 obj.user = User.objects.get(username=request.user)
 obj.save()
 return HttpResponseRedirect('/')

 # To retain frontend widget, if form.is_valid() == False
 form.fields['audio_file'].widget = CustomerAudioFileWidget()

 data = {
 'audio_form': form,
 }

 return render_to_response(template, data,
 context_instance=RequestContext(request))

This is an other example how to edit the audiofield on the frontend.

In url.py:

...
(r'^edit/(.+)/$', 'frontend.views.edit_audio'),

In view.py:

...
@login_required
def edit_audio(request, object_id):

 obj = AudioFile.objects.get(pk=object_id)
 form = CustomerAudioFileForm(instance=obj)

 if request.GET.get('delete'):
 # perform delete
 if obj.audio_file:
 if os.path.exists(obj.audio_file.path):
 os.remove(obj.audio_file.path)
 obj.delete()
 return HttpResponseRedirect('/')

 if request.method == 'POST':
 form = CustomerAudioFileForm(request.POST, request.FILES, instance=obj)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect('/')

 template = 'frontend/edit_audio.html'

 data = {
 'audio_form': form,
 }

 return render_to_response(template, data,
 context_instance=RequestContext(request))

Test Case Descriptions

How to run tests

1. Run full test suite:

$ python manage.py test --verbosity=2

2. Run AudiofileTestCase:

$ python manage.py test audiofield.AudiofieldAdminInterfaceTestCase --verbosity=2

AudiofieldAdminInterfaceTestCase

Different test-cases of the audiofield

def test_admin_index() : Test Function to check Admin index page

def test_admin_audiofield() : Test Function to check Audiofield Admin pages

Index

 _static/django-admin-audiofield.png
Home » Audiofield » Audio files

© The Audio file "[2] Music Sample 01" was changed successfully.

Select Audio file to change

Action: [

0D & AudioName

a1 Autio Sample

a2 Music Sample 01

2 Audio files

Go| 0of2selected
‘Audio file player User

audiofie WH]NB2293843141.09g areskl

areski

_static/comment.png

_static/plus.png

_static/minus.png

_static/django-admin-audiofield-upload.png
Home » Audiofield > Audio files > Add Audio file

Add Audio file

Audio Nam

Audio file: (G oe

Convert To: | Keep orignal audio fie ¥

o
o

v

User:

‘Save and contine edtng | Save and add anctver | [ETT]

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Welcome to django-audiofield's documentation!

 		Introduction

 		Overview

 		Usage

 		Documentation

 		Contributing

 		License

 		Credit

 		Installation overview

 		Install requirements

 		Install dependencies

 		Install requirements

 		Configuration

 		Developer Documentation

 		Prerequisites

 		Objects Description

 		AudioFile

 		AudioFile Forms

 		Forms Definition

 		Forms Usage

 		Test Case Descriptions

 		How to run tests

_images/django-admin-audiofield.png
Home » Audiofield » Audio files

© The Audio file "[2] Music Sample 01" was changed successfully.

Select Audio file to change

Action: [

0D & AudioName

a1 Autio Sample

a2 Music Sample 01

2 Audio files

Go| 0of2selected
‘Audio file player User

audiofie WH]NB2293843141.09g areskl

areski

_images/django-admin-audiofield-upload.png
Home » Audiofield > Audio files > Add Audio file

Add Audio file

Audio Nam

Audio file: (G oe

Convert To: | Keep orignal audio fie ¥

o
o

v

User:

‘Save and contine edtng | Save and add anctver | [ETT]

